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Individuals with type 2 diabetes mellitus (T2DM) and impaired renal function are not 

homogeneous in their clinical presentation and pathophysiology. Other, non-diabetic kidney 

diseases (such as glomerulonephritides) may be present, especially if the clinical 

presentation is atypical (e.g. nephrotic syndrome, haematuria). Patients with a phenotype 

considered “typical” rarely undergo biopsy, and therefore the prevalence of well-defined 

non-diabetic pathologies in this population remains unknown. Clinically, progression can 

take place via the “classical” pattern of “diabetic nephropathy” (DN) going from 

hyperfiltration to microalbuminuria and macroalbuminuria before eGFR declines, while 

other cases experience a decrease of eGFR without ever developing proteinuria. To cover 

this diversity “diabetic kidney disease” (DKD) is the preferred term with DN only being one of 

many possible disease manifestations. Histological lesions in DKD are also highly variable. 

Even in cohorts with a relatively homogenous and typical phenotype (microalbuminuria with 

preserved eGFR), only one third of patients shows biopsy findings indicative of DN 

(mesangial expansion, thickening of the glomerular basement membrane), while the 

majority has nonspecific changes or even normal images on light microscope (Fioretto P; 

Diabetologia 1996; 39:1569). Consequently, the individual prognosis as well as the response 

to a specific therapy is variable. Inhibition of the renin–angiotensin system, GLP-1 agonist or 

SGLT2 inhibitor therapy significantly reduced hard endpoints in prospective randomized 

controlled interventional trials and the implementation of this “cohort-oriented medicine” 

has improved the prognosis of patients with DKD. However, the “number needed to treat” is 

high and, when prescribing drugs with side effects, we harm those, who do not adequately 

respond. In addition, with more effective agents available, the questions about optimum 

combination therapy is emerging.  

Over the last decades, great efforts to better characterize patients with DKD were 

undertaken to improve the prediction of individual prognosis and treatment response. While 

prognostic biomarkers aim to predict the trajectory of DKD based on the present (“as-is”) 

state, predictive biomarkers estimate the consequence of a specific intervention on the 

prognosis. The European Union has supported several multinational research projects (e.g. 

SYSKID, SUMMIT, Beat-DKD) to implement stratified or even personalized therapy in 

complex diseases such as DKD, but unfortunately no novel biomarker candidates have yet 

found their way into clinical practice.  

Critics argue that biomarkers in diseases such as DKD are obviously of little value while 

others propose that extended profiling and application of modern analysis strategies like 

machine learning will ultimately identify the “right” biomarkers or biomarker panels.  

The authors of this article support the idea that only biomarkers can lead to “personalized” 

or “targeted therapy” – and we do see advances in DKD as well. Nonetheless, we critically 

question, whether it is enough to increase the scale of high throughput screening as all 

analysis strategies rely on a specific model of the disease. We believe that it is urgently 

necessary to re-evaluate our basic concept of progression of DKD to avoid failures that are 

not based on the quality of the biomarkers chosen. 
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Biomarkers in interventional studies  

Figure 1: 

   
A typical interventional DKD study design and analysis setting. A subpopulation of a cohort of 

individuals with the target disease (e.g. T2DM) is selected based on biomarkers. They are 

assigned to a placebo or an intervention group and analysed according to the incidence of a 

categorical endpoint (renal replacement therapy, bottom left) or the slope of eGFR under 

active therapy (bottom right, figure adapted from Wanner C et al. J Am Soc Nephrol 2018; 

29:2755)  

 

Interventional studies usually apply strict inclusion and exclusion criteria for patient 

selection. The exact definition of the target population not only serves to define the 

indication for a new agent but also aims at recruitment of a “homogeneous” cohort to 

reduce variance in treatment response. To achieve the goals, we use biomarkers being 

aware that complete homogeneity cannot be achieved (in Figure 1, for instance, patients 

have different body weight). Hence, we focus on specific aspects that we consider 

particularly important in the context of the study. Interestingly the biomarkers used 

(especially in studies on DKD) often are mainly associated with prognosis (i.e. disease 

progression in the absence of an intervention). From a clinical point of view, this paradox 

nonetheless seems reasonable: The patients with the worst prognosis under a state-of-the-

art therapy are in largest need for a new treatment. However, this may very well not be the 

population, which will have the best response to a certain drug. A cohort with a relatively 

homogeneous prognosis can see heterogeneity in treatment response. Thus, predictive 

biomarkers that estimate efficacy of therapy and the impact of the treatment on the 

prognosis would be preferable. Certainly, some prognostic biomarker may also be predictive. 
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Let us assume we test a novel antihypertensive agent and we know that the progression of 

kidney disease is linearly, positively and causally related to blood pressure. We also know 

that the higher the initial blood pressure the more effective antihypertensive agents are at 

lowering it. In this situation, severe hypertension would be a prognostic as well as predictive 

biomarker. 

This example rests on the assumption, that the correlation between the disease progression 

and biomarker expression is linear, that both are causally linked to a common 

pathophysiological mechanism and that the latter is the target of the drug’s mechanism of 

action. Once a biomarker does not meet all these criteria, its power for selection of a 

homogenous group for prognosis may still hold true, while the predictive value will decrease. 

Unfortunately, for most interventions we do not have predictive characteristics available and 

consequently we choose our target population exclusively by prognostic similarity.  

Why is our armamentarium of predictive biomarkers so limited? First, we often have a very 

limited understanding of the actual molecular mechanism of interaction between a disease 

and a drug beyond the binding of the agent to its target structure. The unexpected finding 

that SGLT2 inhibitors positively influence the course of DKD regardless of their primary 

mechanism of action (reduction of HbA1c) serves as an example. On the other hand, the 

quality and clinical utility of biomarkers is often judged exclusively by their prognostic 

potential. We quickly discard novel biomarkers, which are not superior to established 

parameters such as eGFR and albuminuria in predicting the course of the disease. We should 

accept that excellent predictive markers may have little prognostic value just as we have 

realized that excellent prognostic markers do not necessarily tell us about the response to a 

drug. 

In a next step the „homogeneous“ patient population of a study is randomized to an active 

treatment or control group and followed over a period of time and we may choose a 

categorical variable (e.g. initiation of renal replacement therapy) as the primary endpoint.  

Figure 1 shows that the intervention significantly reduces the relative risk by 30% as 

compared to placebo. However, it is also obvious that it is not successful in all, as 20% of 

participants still reach the primary endpoint. Based on the data we cannot answer the 

crucial question for an individual: Do I belong to the 20% or 80%? We only have a 

probabilistic assessment. The definition of the endpoint also implies that we do not know 

how individual patients do under active therapy. It is possible that treatment completely 

stabilizes kidney function in some participants, whereas others reach end-stage kidney 

disease (ESKD). Alternatively, active therapy might slow progression in all participants in the 

treatment arm as compared to placebo. The need for renal replacement therapy is a decisive 

event but even when a drug slows the progression of DKD this is important (the lower the 

eGFR, the higher the cardiovascular risk or the prevalence of anaemia or renal 

osteodystrophy etc.). Alternatively, we can use a decline of eGFR as our endpoint, which is a 

continuous variable. Figure 1 (bottom right) is taken from the EMPAREG Outcome trial. The 

SGLT2 inhibitor Empagliflozin reduced the incidence of hard renal endpoints and this finding 

was paralleled by a significantly smaller mean eGFR decline over time (-1.8 in the placebo 
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group but vs. -0.3 ml/min/1.73m2/year in the active treatment group) (Wanner C et al. J Am 

Soc Nephrol 2018; 29:2755). However, concurrently a marked inter-individual variability of 

the treat effect is obvious.  

Predictive biomarkers to cover inter-individual heterogeneity in treatment response 

Inter-individual heterogeneity in treatment response is a common phenomenon in clinical 

trials and practise that is not limited to Nephrology. The typical way to develop predictive 

biomarkers to tackle this problem is to define a „responder“ and a „no-responder“ group 

after completion of a trial. The allocation of participants to one group is obvious with 

discrete but more difficult with continuous endpoints (like decline in eGFR) as the latter 

mandates an often rather arbitrary cut-off definition. Next, we differentiate both groups via 

characteristics (i.e. biomarkers) present at baseline (post-hoc analysis). Unfortunately, a 

perfect separation is often not possible due to overlap resulting again in probabilistic 

statements. To improve accuracy the number of biomarkers analysed can be increased 

(“omics” screening) and advanced statistical or machine-learning techniques aim for novel 

discrimination-models. Within the EU project SYSKID we made some interesting 

observations in this respect (although in the field of prognosis). In early stages of DKD (eGFR 

>60 ml/min/1.73m2) prediction of the individual progression of the disease using clinical 

biomarkers showed limited accuracy with only marginal improvement when carefully 

selected molecular biomarkers associated with pathophysiology were added (Mayer G; 

Diabetes Care 2017; 40:391). In another study performed within Innovative Medicine 

Initiative Project Beat-DKD, the biomarker panel was extended massively, but the gain 

obtained in discrimination again was marginal (Kammer M; Kidney Int 2019; 96:138). 

Interestingly, within the SYSKID project the results were significantly better in patients with 

an eGFR <60 ml/min/1.73m2. One possible interpretation is that progression is more 

homogenous in advanced kidney disease. An interesting question in this context is whether 

these findings imply that the pathophysiology of the disease becomes more homogeneous 

as the diseases progresses as this should also reduce heterogeneity in treatment response. 

Intra-individual variability in progression of DKD: Implication for analysis strategies to define   

prognostic and predictive biomarkers 

All approaches discussed aim at providing a better resolution of inter-individual 

heterogeneity of progression/response to therapy in DKD but rely on the concept of intra-

individual stability of the disease trajectory. Once defined adequately the individuals 

allocated to the “responder” and “no-responder” group remain within their stratum over 

time. Figure 2 details a different scenario.  

 

 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Mayer%20G%5BAuthor%5D&cauthor=true&cauthor_uid=28077457
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Figure 2: 

  
„Responder“ and „no-responder“ groups are identified based on data obtained at follow-up 

1; subsequently a classifier is derived from baseline data that allows a perfect separation of 

both groups (“responders” have biomarkers A, B and C, “no-responders” D, E and F). Now 

we assume that the individual disease trajectories change at follow-up 2, “responders” 

become “no-responder” and vice versa. Clearly, a classifier that works at follow up 1 loses 

discriminatory power at follow up 2. 

Is there evidence for significant intra-individual instability of eGFR trajectories in CKD/DKD? 

Let us assume Mr. M attends the outpatient clinic. He is 60 years old and has a 15-year 

history of T2DM and hypertension. His albuminuria is 400 mg/day and his eGFR has 

decreased from 80 to 56 ml/min/1.73m2 within the past two years. The patient asks you 

whether he will soon need dialysis. The „KDIGO Clinical Practice Guidelines for the 

Evaluation and Management of Chronic Kidney Disease (CKD)” (Kidney Disease: Improving 

Global Outcomes (KDIGO) CKD Work Group Kidney Int Suppl 2013; 3: 1) contain a heatmap 

with stages of CKD and risk according to eGFR and albuminuria. Mr. M allocates to stage 

G3a/A3 and has a 147-fold risk increase of developing end stage renal disease when 

compared to the reference cohort (stage G1 and G2/A1, i.e. eGFR > 60 ml/min/173m2 and 

albuminuria < 30 mg/day). To be more specific, it may be useful to gain additional 

information from former laboratory values of the patient. We notice that the eGFR 

decreased by 30% (or 24 ml/min/1.73m2) within the last 24 months. In 1996 Nelson et al. 

published a figure showing that in PIMA Indians in albuminuria stage A3 eGFR decreases in a 

straight linear fashion (Nelson RG; N Engl J Med 1996; 335:1636). If we apply this 

observation to Mr. M he will require dialysis in approximately four years (projected eGFR 8 
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ml/min/1.73m2). To double-check we also consult a paper by Coresh et al. (Coresh J; JAMA 

2014; 311:2518) and are surprised. Given a 30% decrease of eGFR within two years and a 

baseline eGFR of 80 ml/min/173m2, the authors observed in a very large cohort an adjusted 

average 5-year absolute risk of end stage renal failure of only 1%. Even after adjustment for 

the competing risk of death, this number is much lower than initially predicted.  Importantly 

this cannot be due to inter-individual variability only as Coresh et al. observed this risk in 

individuals first defined by a stable and homogenous progression of a 30% eGFR decline 

during a two-year period. Obviously, the course of the disease changed in many individuals 

thereafter to a non-linear pattern and all issues outlined in Figure 2 suddenly apply.  

Based on the paper by Coresh we cannot rule out that intra-individual variability is caused by 

changes in therapy, as there is no information provided. So, do we have data on the eGFR 

trajectory in DKD on stable medication? Kröpelin et al. described changes in proteinuria over 

time in DKD cohorts receiving a stable angiotensin-receptor blocker (ARB) therapy within the 

RENAAL and IDNT trials (Kröpelin F; Nephrol Dial Transplant 2016; 31:1471). After treatment 

was initiated, proteinuria decreased by 30% in 36% of patients. In these individuals, 

proteinuria further decreased in 44%, remained stable in 32% and increased again in 24%. A 

similar longitudinal variability was noted in patients with an increase in albuminuria within 

the first six months. Figure 3 shows unpublished data derived from a longitudinal 

observational study in patients with T2DM (PROVALID).  

Figure 3: 

 

Selected patients had to be on stable therapy over five consecutive years and among them 

we identified those, who experienced an eGFR decline of at least 25% within the first two 

years (a certain drop in eGFR according to the KDIGO guidelines) to separate “responders” 

from “no-responders”. As can be seen the eGFR trajectories over the following years (take 
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note: therapy remained unchanged) in some of the “no-responder” patients eGFR continues 

to decline or remains at least 25% lower than the baseline value; in others, however, eGFR 

increases after year 2 and these patients would then be allocated to the responder group. 

Any model for the prediction of progression/treatment response, which was built on 

baseline data and 2 year follow up data thus would lose accuracy thereafter.  

Conclusion and perspective 

The progression trajectories of patients with chronic kidney disease such as DKD show 

marked inter-individual variability, even under stable therapy and the development of 

reliable biomarkers to identify subgroups with good or insufficient response is a strong 

clinical need. Extensive patient profiling by modern “omics” technologies, especially when 

combined with novel statistical tools has added precision to our predictions but there still is 

ample room for improvement. We believe that hitherto too little attention has been payed 

to the problem of intra-individual longitudinal variability of eGFR. To advance we need 

alternative analytical concepts to cover both aspects of heterogeneity. Systems theory 

allows to model dynamic systems and DC-REN, a recently initiated Horizon 2020 project, 

aims to introduce these methods to medicine and uses DKD as a prototypical disease.  
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